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We complement and extend our work on fluctuations arising in nonequilibrium systems in steady states
driven by Lévy noise �H. Touchette and E. G. D. Cohen, Phys. Rev. E 76, 020101�R� �2007��. As a concrete
example, we consider a particle subjected to a drag force and a Lévy white noise with tail index �� �0,2�, and
calculate the probability distribution of the work done on the particle by the drag force, as well as the
probability distribution of the work dissipated by the dragged particle in a nonequilibrium steady state. For
0���2, both distributions satisfy what we call an anomalous fluctuation property characterized by positive
and negative fluctuations that asymptotically have the same probability. For �=2, by contrast, the work and
dissipated work distributions satisfy the known conventional and extended fluctuation relations, respectively,
which are both characterized by positive fluctuations that are exponentially more probable than negative
fluctuations. The difference between these different fluctuation behaviors is discussed in the context of large
deviation theory. Experiments that could probe or reveal an anomalous fluctuation property are also discussed.
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I. INTRODUCTION

Many works on nonequilibrium systems have been de-
voted recently to the study of fluctuations around out-of-
equilibrium steady states. The basis of these studies is typi-
cally the following: for a given system driven in a
nonequilibrium steady state, one considers an observable A�

integrated over a time �, such as the work done by a force
acting on the system during a time �, and proceeds to calcu-
late its probability distribution P�A��. Interestingly, what has
been found for many different systems and many observables
A� is that the positive fluctuations of A� are exponentially
more probable than its negative fluctuations, in the sense that

P�A� = �a�
P�A� = − �a�

= ec�a+o���, �1�

where c is a constant that does not depend on � and o��� is a
sublinear correction term in �, which may be zero if the
probability ratio is exactly exponential in �. Examples of
observables for which Eq. �1� holds include the entropy pro-
duction of chaotic deterministic systems �1–3� and stochastic
Markov systems �4–6�, as well as other entropy- and work-
related quantities defined in the context of particles moving
in fluids �7,8�, electrical circuits �9,10�, granular media
�11–14�, and turbulent fluids �15,16�, among other systems.

In early studies of these systems, it was thought that the
result expressed by Eq. �1� might be a general law of non-
equilibrium fluctuations, but it is now known that this is not
the case. Some observables, such as the heat absorbed by
driven Brownian particles �17–19� and the current of the
zero-range process �20,21�, satisfy a more general relation of
the form

P�A� = �a�
P�A� = − �a�

= e�f�a�+o���, �2�

where f�a� is in general a nonlinear function of a, which
does not depend on �. The difference between Eqs. �1� and
�2� serves, following the work of van Zon and Cohen �8,18�,
as a basis for classifying nonequilibrium fluctuations. Ob-
servables that comply with Eq. �1� are said to satisfy a con-
ventional fluctuation relation, whereas those satisfying Eq.
�2� are said to satisfy an extended fluctuation relation.

Our goal in this paper is to revisit this classification of
nonequilibrium fluctuations. Based on the fact that the exis-
tence of a conventional or extended fluctuation relation is
essentially equivalent to the existence of a probability distri-
bution having a large deviation form �22�, we have con-
structed in �23� a model of a driven nonequilibrium system
for which the mechanical work W� done over a time � by the
driving force satisfies neither the conventional nor the ex-
tended fluctuation relation because the probability distribu-
tion P�W�� of W� fails to have the form of a large deviation
probability. The probability distribution P�W�� is neverthe-
less well defined and can be used to define the probability
ratio P�W�� / P�−W��, which has in this case a power-law
rather than an exponential form in �. We have called this
property of the probability ratio the anomalous fluctuation
property, following a terminology used in studies of Lévy-
type noise, and have proposed some experiments with which
one could physically “test” this fluctuation property.

Here we complete our study of anomalous fluctuations
initiated in �23� by discussing in more detail the fluctuations
of W� for the model studied in that paper and by considering
the fluctuations of an additional observable called dissipated
work. These two points are the subject of Secs. III and IV,
respectively. We also discuss in Sec. V the difference be-
tween conventional and extended fluctuation relations, on the
one hand, and the anomalous fluctuation property, on the
other hand, from the general point of view of large deviation
theory. The main result discussed in that section follows the*ht@maths.qmul.ac.uk
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observation that fluctuation relations of the conventional and
extended types are equivalent to having probabilities of the
large deviation kind, and that other types of fluctuation prop-
erties must arise whenever the probability distribution of an
observable does not have the large deviation form. The
anomalous fluctuation property that we discuss here is but
one example of fluctuation properties, which arise by replac-
ing Gaussian white noise as the source of noise in Langevin
equations by Lévy white noise or, more generally, by replac-
ing noise sources having finite moments by noise sources
having infinite moments.

The relationship between fluctuation relations and large
deviation theory was noted in the original derivations of the
fluctuation theorem for the entropy production �1–3� �see
also �24�� and is explicitly discussed in our previous paper
�23�, as well as in a recent review paper written by one of us
�22�. Here we continue these discussions by studying some
conditions under which the anomalous fluctuation property is
expected to arise. We end the paper in Sec. VI with various
remarks related to the physical interpretation of our results,
the nature of Lévy noise, as well as future work aimed at
extending and experimentally verifying our results.

II. MODEL

We consider in this paper a Brownian particle subjected to
three different forces: a linear restoring force arising from a
particle-confining harmonic potential moving at a constant
speed, a friction force, and a random force or noise. The
Langevin equation modeling the effect of these forces on the
Brownian particle can be found in the work of van Zon and
Cohen �8�, which is itself based on the experimental work of
Wang et al. �7�. Here we study the overdamped version of
that equation given by

�ẋ = − ��x�t� − vt� + ��t� . �3�

In this equation, x�t� denotes the position �in the laboratory
frame� of the Brownian particle at time t, v is the velocity
with which the harmonic potential moves, � is the friction
coefficient, � is the strength of the harmonic potential, and
��t� is the random force.

In previous studies of the model defined above, as in most
studies of Langevin equations, the random force ��t� is
assumed to be a Gaussian white noise characterized by its
zero mean ���t��=0 and its autocorrelation function
���t���t���=�	�t− t��, where � is the noise power. We depart
from this assumption here by taking ��t� to be a symmetric
Lévy white noise defined by the following characteristic
functional:

G��k� =� D���P���ei�k�t���t�dt = exp	− b� 
k�t�
�dt� ,

�4�

with b
0 and 0���2 �25–27�. The first integral in this
expression is the path integral defining the characteristic
function of the noise process ��t�, whereas the second ex-
pression on the right-hand side is the expression that defines
��t� as being a Lévy white noise with strength b and index �;

that is, an uncorrelated noise distributed according to a sym-
metric Lévy distribution with scale parameter b and tail in-
dex �.1 The case of Gaussian white noise considered in �8� is
recovered from this characteristic function by choosing
�=2, in which case ��t�=0 and ���t���t���=�	�t− t�� with
�=2b as the noise power.

It is important to note that the use of Lévy noise in Lange-
vin equations is often seen as problematic, since the mean of
��t� diverges for �� �0,1� and its noise power � diverges for
all �� �0,2� �25–27�. The fact is, however, that these diver-
gences do not lead to any physical pathologies; they are
merely the sign that the concept of mean and noise power
�viz., variance� are ill-defined or inapplicable for Lévy noise.
This point has been discussed in the literature; see, e.g., �26�.
In particular, the fact that ��t� has an infinite mean for �
� �0,1� does not imply physically that the energy supplied to
the Brownian particle by the random force ��t� is infinite.
The increments ��t�dt of the noise process ��t� are necessar-
ily always finite, so that the energy supplied by ��t� is also
always finite.

As for the divergence of the power of ��t� for �� �0,2�, it
is true that it implies that there can be no fluctuation-
dissipation relation relating the friction coefficient with the
noise power. However, if we view the friction and the noise
as being independent, that is, as arising physically from dif-
ferent physical mechanisms, then there is no need for a
fluctuation-dissipation relation between the friction and the
noise. This situation is physically possible: one can imagine,
for example, that the friction force in the Langevin equation
arises from a solid-solid contact, while the noise is imposed
externally, say, using a computer-generated Lévy noise. This
situation will be discussed more concretely in Sec. VI.

For now we will leave these considerations aside to focus
on the nonequilibrium steady state generated by the Lange-
vin equation defined in Eq. �3� and to study the fluctuations
of the work done on the Brownian particle in such a state by
the moving potential. This is done in the next section. The
fluctuations of the dissipated work are studied in Sec. IV.

III. WORK FLUCTUATIONS

The total work done on the Brownian particle described
by Eq. �3� is the sum of two contributions: the mechanical
work done on the particle by the random force ��t� �17�,
which is explicitly considered here as an independent exter-
nal force, and the mechanical work done on the particle by
the moving harmonic potential �8�. We study in this section
the latter quantity, which is given by the integral

W� = − �v�
0

�

�x�t� − vt�dt �5�

for a given time interval �0,��. Thus W� is the mechanical
work done on the Brownian particle by the harmonic poten-
tial over a time �. For convenience, we rewrite this quantity
as

1In our previous work, we used � to denote the index of the Lévy
noise. Here we use � for this index, since we use � to denote the
friction coefficient.
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W� = − �v�
0

�

y�t�dt �6�

in terms of the position y�t�=x�t�−vt of the particle in the
frame of the moving potential �comoving frame� �8�. In
terms of y�t�, the Langevin equation of Eq. �3� reads

ẏ�t� = −
1

�r
y�t� − v +

1

�
��t� , �7�

where we have defined �r=� /�, the characteristic relaxation
time of the particle in the potential. Our aim in the next
subsections is to calculate the probability distribution of W�

for various values of � and to discuss the properties of this
distribution in the light of fluctuation relations.

A. General distribution

The calculation of the distribution P�W�� is done in three
steps. First, note that the characteristic function of W� can be
obtained from the characteristic functional Gy�k� of y�t� de-
fined as

Gy�k� =�exp	i�
0

�

k�s�y�s�ds� , �8�

by choosing the test function

k�s� = �− q�v , 0 � s � �

0, s 
 � .
� �9�

From the definition of the work, given in Eq. �6�, we indeed
have

GW�
�q� = �eiqW�� =�exp	− iq�v�

0

�

y�t�dt� = Gy�k� .

�10�

In the second step, we express the characteristic function of
y�t� in terms of the characteristic function of the noise pro-
cess ��t�. The Langevin equation for y�t�, shown in Eq. �7�,
is linear in y�t�, so we can use for this purpose a general
result of Cáceres and Budini �28,29� given by

Gy�k� = exp	ir0y0 − iv�
0

�

r�l�dl�G��r/�� , �11�

where

r�l� = �
l

�

e�l−s�/�rk�s�ds , �12�

r0=r�0�, y0=y�0�=x�0�, and G� is the characteristic function
of the noise ��t�. Substituting the expression of G�, given in
Eq. �4�, we then obtain

GW�
�q� = exp	ir0y0 − iv�

0

�

r�l�dl −
b

���
0

�


r�l�
�dl� ,

�13�

with r�l� given by Eq. �12� and k�s� given by Eq. �9�. Equa-
tions �11� and �13� assume that the initial condition y0 is a

constant. If y0 is a random variable, then Gy�k� must be av-
eraged over the distribution of y0 to obtain the proper char-
acteristic function of the complete process y�t� with its ran-
dom initial condition. Here we will assume that y0=0.

The third and final step leading to P�W�� consists in
evaluating the integrals involved in Eqs. �12� and �13�. The
integral in Eq. �12� defining r�l� has, with Eq. �9�, the solu-
tion

r�l� = �qv��e�l−��/�r − 1� , 0 � l � �

0, l 
 � .
� �14�

From this result, we compute the first integral on the right-
hand side of Eq. �13�:

�
0

�

r�l�dl = v�q��r�1 − e−�/�r� − �� . �15�

As for the second integral appearing on the right-hand side
of Eq. �13�, which involves �, it cannot be solved analyti-
cally for all �� �0,2�, to the best of our knowledge, al-
though it is clear that it leads to a term proportional to 
q
� in
the exponential of GW�

�q�, since r�l� is proportional to q
according to Eq. �14�. As a result, we obtain

GW�
�q� = eiMq−V
q
�, �16�

where

M = v2��� − �r�1 − e−�/�r�� , �17�

and

V = bv��
0

�


e−��−l�/�r − 1
�dl . �18�

The characteristic function of Eq. �16� is a central result of
this paper, which shows, following the theory of Lévy distri-
butions �25–27�, that the distribution P�W�� of the work W�

is a symmetric Lévy distribution having the following prop-
erties:

�i� P�W�� is symmetric and centered around M, so that M
represents the most probable value or mode of W�; see Fig. 1.

�ii� For 1���2, the integral

�W�� = �
−�

�

wP�W� = w�dw �19�

defining the mean of W� exists, so that M also represents the
mean of W�. This applies only for this range of � values; for
the complementary range 0���1, the integral above does
not converge, so that M cannot be interpreted as the mean.
Thus M represents the mode for all �� �0,2�, but represents
the mean only for �� �1,2�.

�iii� The parameter V is related to the width of the distri-
bution P�W��: the larger V is, the wider P�W�� is. For �=2,
in particular, V is half the variance of W�, so the width of
P�W��, taken as the standard deviation of W�, is proportional
to V1/2. For 0���2, the variance does not exist even
though V is finite. In this case, one can still relate V to the
width of P�W�� by calculating moments of W� of order
smaller than 2. In particular, it can be proved �30� that

ANOMALOUS FLUCTUATION PROPERTIES PHYSICAL REVIEW E 80, 011114 �2009�

011114-3



�
W� − M
� = aV/�, �20�

where 0��� and a is some positive constant. The aver-
age �
W�−M
� is called the fractional moment of order 
�30�. As a particular case of Eq. �20�, we have for =1:

�
W� − M
� � aV1/�, �21�

when �
1.
�iv� M and V are directly proportional to � in the limit of

large �, that is, M �� and V�� as �→�. This follows from
Eqs. �17� and �18�.

�v� For 0���2, P�W�� has power-law tails that decay
according to

P�W� = w� �
�V


w − M
�+1 �22�

as 
w
→� �31�. This property is responsible for the divergent
mean observed for �� �0,1� and the divergent variance ob-
served for �� �0,2�. Whenever, P�W�� has this property, we
say that the tails of P�W�� decay as a power law with expo-
nent �.

We will be interested in the next sections to study the
fluctuations of W� in the long-time or asymptotic limit where
� is much larger than the relaxation time �r. To properly
define this limit, we must note two properties of W�. First,
because M is proportional to �, according to the property �iv�
above, the mode of P�W�� escapes to infinity as �→�. Sec-
ond, because V is also proportional to �, the width of P�W��
also grows indefinitely with �. Thus P�W�� gets flatter as
�→� while its mode moves to infinity.

To eliminate these diverging properties of P�W��, we con-

sider the intensive or scaled work, defined by W̄�=W� /M, as
the random variable of interest rather than total work W�

which is extensive with �.2 The characteristic function of W̄�

is related to the characteristic function of W� by a simple
rescaling:

GW̄�
�k� = GW�

�k/M� = eikM̄−V̄
k
�. �23�

With this change of variables, it is easily seen that the mode

of W̄� is M̄ =1, while its “width” is given by V̄=V /M�.

Therefore, the probability distribution of W̄� is now centered

at 1 and is such that V̄��1−� as �→�, since V�� and
M �� in that limit.

Note that we could have considered W� /� as the scaled
work rather than W� /M. The only difference between these

two definitions is the value of the mode M̄: for the scaled

work defined by W� /M, M̄ is always equal to 1, whereas for

W̄� /�, M̄ is a positive constant which may be different than
1. Note also that rescaling the extensive work W� by � or any
factor proportional to � is the only way of centering the
distribution of W� to a constant. For, if one divides W� by a
factor smaller than �, then the mode of the resulting random
variable will still grow with �, whereas if one divides W� by
a factor greater than �, then the distribution of the resulting
variable will become symmetric. In the latter case, all the
information about the asymmetry of the work fluctuations is
discarded.

With this in mind, we now turn to studying the distribu-

tion of W̄� for different values of � in the range �0,2�. Four
cases of fluctuations arising from four different regimes of
Lévy noise will be considered. The first is the Gaussian noise
regime that leads to a conventional fluctuation relation for

W̄�. The three others are proper Lévy noise regimes that lead

to anomalous fluctuation properties for W̄�.

B. Gaussian noise: �=2

The distribution of the scaled work W̄�=W� /M that results
from Gaussian white noise �i.e., �=2� was found by van Zon
and Cohen �8�. We quickly repeat their main results here
since they serve as our point of departure for defining the
anomalous fluctuation property. What is important to note is

that the distribution P�W̄�� for �=2 can be put in the form

P�W̄� = w̄� = e−�I�w̄�+o���, �24�

where

I�w̄� =
�w̄ − 1�2

2
. �25�

The parabolic form of the function I�w̄�, which is called the
rate function �22�, obviously leads to a Gaussian distribution

for P�W̄��. For simplicity, we shall drop in the remaining the
o��� term in probability distributions so as to write

P�W̄� = w̄� � e−�I�w̄�. �26�

The approximation sign “�” means, following Eq. �24�, that

P�W̄�= w̄� decays, to a first degree of approximation, expo-
nentially with �. This property, which is commonly referred
to as the large deviation property or large deviation principle
�22�, plays an important role in fluctuation relations, as it
directly implies that

2The scaled work W� /M is equal to W� / �W�� when the average
work �W�� exists.

M∼ τ Wτ

∼ τ1/μ

P( )Wτ

V 1/μ

FIG. 1. Sketch of the distribution P�W�� of the total �extensive�
work. The mode M of the distribution is proportional to � while the
width, which is proportional to V1/�, scales like �1/�.

H. TOUCHETTE AND E. G. D. COHEN PHYSICAL REVIEW E 80, 011114 �2009�

011114-4



P�W̄� = w̄�

P�W̄� = − w̄�
� e�f�w̄�, �27�

where

f�w̄� = I�− w̄� − I�w̄� . �28�

What is special about the Gaussian noise case is that the
fluctuation function f�w̄� happens to be linear in w̄, so that

P�W̄� = w̄�

P�W̄� = − w̄�
� e�w̄. �29�

This result is the signature of the conventional fluctuation
relation as defined in �8,18� and Eq. �1� of Sec. I. Thus,

under Gaussian noise, the mean work W̄� is said to satisfy a
conventional fluctuation relation.3

C. Cauchy noise: �=1

The Fourier transform of the general characteristic func-

tion that we have derived for W̄� can be computed analyti-
cally for only two values of �. The first value is �=2, which
we have just considered and which leads to Gaussian fluc-

tuations of W̄�. The second value is �=1 and leads to a
so-called Cauchy distribution having the form

P�W� = w� =
1

�

V

�w − M�2 + V2 �30�

for the total work and

P�W̄� = w̄� =
1

�

V̄

�w̄ − M̄�2 + V̄2
�31�

for the scaled work. These distributions were already dis-
cussed in our previous paper �23�. What is important to note
about P�W�� is that its mode M and its width parameter V are
both proportional to �, which implies, as mentioned before,
that this distribution moves to the right and flattens as �
increases. This is illustrated in Figs. 2�a� and 2�b�. The
power-law tails of P�W��, predicted by the expression in Eq.
�22�, are clearly seen in the log-log plot of Fig. 2�b� as
straight lines.

The distribution P�W̄�� of the scaled work retains the
power-law tails of P�W��, as is obvious from Eqs. �30� and
�31� as well as from Figs. 2�c� and 2�d�, but does not have
the translation and flattening behavior that we have noted for

P�W��. In fact, one exceptional property of P�W̄�� for �=1 is
that it becomes time independent in the limit of large � be-

cause V̄=V /M =O�1� in �; see Figs. 2�c� and 2�d�. This prop-

erty directly implies that the ratio P�W̄�= w̄� / P�W̄�=−w̄� is
also time independent. The precise form of this ratio, which
we denote by g��w̄� from now on, is obtained from Eq. �31�:

g��w̄� =
P�W̄� = w̄�

P�W̄� = − w̄�
�

�− w̄ − 1�2 + 1

�w̄ − 1�2 + 1
, �32�

and is plotted on a log-linear scale in Fig. 2�e�. In this plot,
g��w̄� has a maximum located at w̄=�2 and

3To be more precise, we should say that W̄� satisfies an asymptotic
conventional fluctuation relation, since the approximation above is
only valid in the limit of large times �. All the results obtained in
this paper are derived in this limit, so the attribute “asymptotic” will
be omitted.
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FIG. 2. �Color online� Work fluctuations for Cauchy noise, �=1. �a� Distribution P�W�=w� of the total �extensive� work W�. �b� Log-log

plot of P�W�=w� for positive w. �c� Distribution P�W̄�= w̄� of the scaled work W̄�. �d� Log-log plot of P�W̄�= w̄� for positive w̄. The

power-law tails of P�W�� and P�W̄�� give rise to straight lines with slope −2 in the log-log plots. �e� Fluctuation property: log-linear plot of

g��w̄�= P�W̄�= w̄� / P�W̄�=−w̄�. Note that P�W̄�= w̄�, and consequently g��w̄�, become invariant with � for large �. This is the main feature of
the Cauchy case. Units: �r=v=b=1.
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lim
w̄→�

g��w̄� = 1. �33�

This last limit has no equivalent in the Gaussian case and is

a direct consequence of the fact that both tails of P�W̄��
decay as a power law with the same exponent �=1. In the

Gaussian case, both tails of P�W̄�� decay exponentially, but

because P�W̄�� is not centered at 0, the positive fluctuations

of W̄� are exponentially more probable than the negative
fluctuations. In the case of Cauchy noise, the difference be-

tween P�W̄�= w̄� and P�W̄�=−w̄� is so weak that the ratio
g��w̄� of these two probabilities goes to 1 in the limit of very
large fluctuations. This implies, concretely, that large positive
fluctuations are asymptotically just as likely to be observed
as negative fluctuations of equal magnitude, as was already
noted in �23�.

We shall see next that this property of Cauchy fluctuations
carries over to all other values of � in the range �0,2�. For
this reason, we follow our previous work �23� and define a
class of fluctuation properties specific to Lévy noise. Given

the random variable W̄� and its distribution P�W̄��, we say

that W̄� satisfies the anomalous fluctuation property if �i�
P�W̄�� has power-law tails; �ii� the limit shown in Eq. �33� is
satisfied.

The term “anomalous” follows the terminology used in
studies of Lévy-type noise, which refer, for example, to
“anomalous diffusion” or “anomalous transport” as diffusion
or transport processes driven by Lévy noise or noises akin to
Lévy noise �see, e.g., �32��. In this context, the term “anoma-
lous” is used not in the sense of “abnormal,” but in the sense
of “anomalous” with respect to the “normal” behavior ob-
tained with Gaussian noise.

Note that there is a further property of Gaussian fluctua-
tions that we lose with Cauchy noise, namely, that the fluc-

tuations of W̄� do not decrease as �→�. This again is a

consequence of the time independence of P�W̄�� obtained
with Cauchy noise. The practical consequence of this differ-
ence is that, in the case of Cauchy noise, one does not need

to accumulate a large number of samples of W̄� to observe
deviations in the value of this quantity. For Gaussian noise,
an exponential number �in �� of such samples is needed to

observe deviations of W̄� from its mean. But for Cauchy

noise any small samples of W̄� will reveal that this quantity is
fluctuating no matter how large � is.

D. Upper Lévy regime: 1���2

Two different regimes of fluctuations arise when consid-
ering values of � different from 1 and 2: a regime of
“weaker than Cauchy” fluctuations corresponding to
�� �1,2� and a regime of “stronger than Cauchy” fluctua-
tions corresponding to �� �0,1�. We discuss in this subsec-
tion the former regime, which we call the upper Lévy regime.

The plots shown in Fig. 3 illustrate the behavior of P�W��
and P�W̄�� for the case �=1.5, which is representative of all
the values �� �1,2� in the upper Lévy regime. These plots
were obtained by numerically calculating the inverse Fourier
transform of the characteristic function GW�

�q� found in Eq.
�16�, using the “Stable” MATHEMATICA package �33�. As in

the Cauchy case, we see here that both P�W�� and P�W̄��
have power-law tails and that the mode of P�W�� increases

with �, whereas the mode of P�W̄�� is fixed at 1. However,

contrary to the Cauchy case, the distribution P�W̄�� of the
scaled work for �� �1,2� is not invariant with �, but be-
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FIG. 3. �Color online� Work fluctuations for �=1.5 �upper Lévy regime�. �a� Distribution P�W�=w� of the total �extensive� work W�. �b�
Log-log plot of P�W�=w� for positive w. �c� Distribution P�W̄�= w̄� of the scaled work W̄�. �d� Log-log plot of P�W̄�= w̄� for positive w̄. The

power-law tails of P�W�� and P�W̄�� give rise to straight lines with slope −�−1 in the log-log plots. �e� Fluctuation property: log-linear plot

of g��w̄�= P�W̄�= w̄� / P�W̄�=−w̄�. Note that g��w̄�→1 as w̄→� for all �. Units: �r=v=b=1.
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comes more and more concentrated around the value M̄ =1
as �→�; see Figs. 3�c� and 3�d�. This arises because typical
fluctuations of W� increase less rapidly than � in this range of
�, which implies that the typical fluctuations for W̄� must

decrease with �. This concentration of P�W̄�� around its

mode implies a law of large numbers for W̄�, in the sense that

W̄�→1 with probability 1 as �→�. This law of large num-
bers also holds for Gaussian noise and means concretely that

measurements of W̄� are most likely to be close to 1 as one
considers longer and longer integration times �.4

For large but finite �, fluctuations can still be observed
and a measure of how positive fluctuations are more likely to
be observed than negative fluctuations is provided by the
ratio g��w̄�. This ratio is plotted in Fig. 3�e�. As for the
Cauchy case, we see here that positive fluctuations of the
mean work are more likely to be observed than negative
fluctuations of equal magnitude, since g��w̄�
1 for w̄
0,
and that g��w̄�→1 as w̄→�, meaning that the difference in
probabilities for positive and negative fluctuations becomes
negligible for large fluctuations. Because of this, and the fact

that P�W̄�� has power-law tails, we conclude that W̄� satisfies
the anomalous fluctuation property for all �� �1,2�, as in
the Cauchy case. Unlike this case, however, the maximum of
g��w̄� increases with � when �� �1,2� and moves toward the
value w̄=1 as a result of the law of large numbers. This
behavior of the maximum of g��w̄� is specific to �� �1,2�
and thus serves as a signature of the upper Lévy fluctuation
regime. In the Cauchy case, by comparison, the fluctuations
are “stronger” and lead to a time-independent g��w̄� whereas,
in the Gaussian case, the fluctuations are considerably

weaker and lead to a ratio g��w̄�, which is exponential in �.

E. Lower Lévy regime: 0���1

The results of the numerical inverse Fourier transform of
GW�

�q� and GW̄�
�k� are shown in Fig. 4 for �=0.5, which is

representative of all the values in the range �0,1�. The distri-

butions P�W�� and P�W̄�� that we obtain in this range of �
characterize what we call the lower Lévy regime and share
many of the properties that we have mentioned for the upper

Lévy regime. In particular, W̄� satisfies the anomalous fluc-
tuation property in the lower Lévy regime since its distribu-
tion has power-law tails and g��w̄�→1 in the limit where
w̄→�; see Fig. 4�e�.

The main difference between the lower and upper Lévy
regimes are the scaling properties of the fluctuations with �.

Whereas the typical fluctuations of W̄� decrease with increas-
ing � when �� �1,2�, they increase with � when �� �0,1�
because, for that interval, the typical fluctuations of the ex-

tensive work W� increase faster than �. As a result, P�W̄��
does not become more and more concentrated around its
mode in the limit �→�, as was the case in the upper Lévy
regime �see Fig. 3�, but flattens in this limit. This implies that

there is no law of large numbers for W̄� in the lower Lévy
regime: as longer and longer integration times are consid-
ered, the typical fluctuations of the scaled work actually in-
crease in size, which translates in Fig. 4 into a flattening of
g��w̄� with �.

Since the typical fluctuations of W̄� increase with �, one
might be tempted to rescale the total work W� by a � factor
larger than �. However, the asymptotic distribution that one
would obtain from this rescaling would be symmetric: it
would assign the same probability to positive and negative

4A random variable for which the law of large numbers holds is
also said to be “self-averaging.”
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fluctuations of equal magnitude and would thus contain no
information about the nonequilibrium steady-state behavior
of the model since g� would then trivially be equal to 1.

IV. DISSIPATED WORK

In previous studies of the model that we consider here,
two quantities have been analyzed �19�: the first is the work
done by the harmonic force on the particle, which we have
just studied; the second is the heat released by the particle to
its environment to maintain its nonequilibrium steady state
�34�. Since the particle’s dynamics is studied in the over-
damped limit, the particle has no kinetic energy, so that its
total internal energy is entirely given by the potential energy,
which is determined by the position y�t� in the comoving
frame of the potential:

U�t� =
�x�t� − vt�2

2
=

y�t�2

2
. �34�

In this context, the heat Q� was defined in �19� as the energy
gained by the particle from the mechanical work W� done on
it by the harmonic force over a time � minus that part of this
energy which is transformed into potential energy, that is,

Q� = W� − �U�, �35�

where �U�=U���−U�0� is the change in potential energy
after a time �. Here we assume that x�0�=y�0�=0, so that
�U�=U���.

It is important to note that, in the original context in
which the model was studied �19�, the quantity Q� defined by
Eq. �35� was correctly interpreted as the heat because the
particle is immersed in a fluid, which is responsible for both
the random force and the friction force applied to the Brown-
ian particle. Accordingly, any energy gained by the particle
in the form of mechanical work that is not converted into
potential energy is necessarily lost, by energy conservation,
to the fluid as heat. In this sense, Eq. �35� expresses the
conservation of energy.

In our treatment of the model, the random force ��t� is an
external force, which implies that the total work done is the
sum of the work W�

� done on the Brownian particle by the
random force ��t� and the mechanical work W� done on the
particle by the moving harmonic potential. The heat Q� in
this case should therefore be defined, by energy conserva-
tion, as

Q� = W� + W�
� − �U�. �36�

This quantity Q� is always positive because it is the heat
produced by the friction alone and not the friction and the
random force as in the case of a Brownian particle immersed
in a fluid. As a result, we cannot define a fluctuation relation
for this quantity. In this section, we will study therefore a
different quantity having both negative and positive fluctua-
tions. We define this quantity in analogy with Eq. �35� by

R� = W� − �U�, �37�

where, as before, W� is the mechanical work. The quantity R�

has a clear physical interpretation: it is that part of the me-

chanical work W� that is not converted into potential energy
�U�. For this reason, we call R� the dissipated work. Note
again that R� would be the heat if the only contribution to the
total work done on the particle was the mechanical work W�;
see Eq. �35�. In our case, there are two distinct contributions
to the total work as shown in Eq. �36�.

The probability distribution of W�−�U� was calculated in
the asymptotic limit by van Zon and Cohen �19� for the
Gaussian noise case, �=2. The generalization of their results
to Lévy noise is not straightforward since their calculations
strongly rely on the Gaussian nature of the noise. By assum-
ing an independence property between W� and �U� for
�→�, we are able, however, to obtain the tail behavior of
P�R��, which is sufficient to determine whether the dissi-
pated work satisfies the anomalous fluctuation property or
not. The assumption, precisely, is that W� and �U� become
asymptotically uncorrelated in the limit �→�, so that

�eikR�� = �eikW���e−ik�U�� �38�

in this limit. For external Gaussian noise, the distribution of
R� obtained under this assumption can be shown, from the
calculations reported by Taniguchi and Cohen �34�, to have
the same asymptotic form as the exact distribution calculated
in �18,19�. We will assume here that this independence prop-
erty between W� and �U� holds also for Lévy white noise
when � becomes much larger than the relaxation time �r.

5

The characteristic function of W� was calculated in Sec.
III for all �� �0,2�. As for the characteristic function of the
potential energy,

�e−ik�U�� = �
−�

�

e−iky2/2P�y��� = y�dy , �39�

it has no known closed-form solution �35�. However, it is
known that the distribution of y��� is, for large �, a Lévy
distribution with the same index � as the noise ��t� �30�, so
that

P�y��� = y� � c
y
−1−� �40�

as 
y
→�, with c a positive constant. Inserting this
asymptotic result in the integral of Eq. �39�, we then obtain

�e−ik�U�� � �
�

�

e−iky2/2y−1−�dy � 1 − a
k
�/2 �41�

as k→0. In these expressions, a and � are positive constants.
The exact value of � is irrelevant for the last asymptotic
result to hold since only the tail behavior of P�y���� affects
the scaling of the integral. Moreover, the reason for having
the limit k→0 in the asymptotics of the characteristic func-
tion is because the behavior of the tails of power-law distri-

5This assumption can be argued using two basic observations.
First, because the noise is white �delta correlated�, the position y�t�
exhibits only short time correlations. Second, because the work W�

is an integral of y�t�, it can only show a weak correlation with any
single position y�t� in time, and, in particular, with the last position
y���, which determines �U�. These two arguments apply both to
Gaussian and Lévy noises.
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butions is determined only by the behavior of their charac-
teristic functions around k=0, and vice versa �26�.
Combining this asymptotic result with the expression of the
characteristic function of W� given in Eq. �16�, we then find

�eikR�� � �1 + iMk − V
k
���1 − a
k
�/2� �42�

as k→0. Since �� �0,2�, the dominant contribution in the
above expression is

�eikR�� � 1 − a
k
�/2, �43�

which implies that

P�R� = r� � c�
r
−1−�/2, 
r
 → � , �44�

where c� is some positive constant. Thus the tails of P�R��
have a power-law decay, as in the case of the work, which
implies that the fluctuations of the dissipated work also sat-
isfy the anomalous fluctuation property found for W�. The
only difference with W� is that the decay exponent of the
tails of P�R�� is � /2 instead of �; see Eq. �22�.

This result should be contrasted with the Gaussian case,
for which the fluctuations of R�, or the heat Q� in that case,
are known to satisfy an extended fluctuation relation �18,19�,
rather than a conventional fluctuation relation, satisfied by
the work W�. For Lévy noise, the fluctuations of W� are not
so different from the fluctuations of R�, since both quantities
have distributions with power-law tails. In spite of this dif-
ference, there is one property of R� that remains the same for
both Gaussian and Lévy noises, namely, that the large fluc-
tuations of R� are mostly the result of the large fluctuations
of the potential energy �U�. This property, also observed for
Gaussian noise �18,19�, can be understood here by noting
that the asymptotic behavior of the characteristic function of
R� around the origin k=0, which determines the behavior of
the tails of P�R��, is determined entirely by the asymptotics
of the characteristic function of �U� around k=0. Thus, al-
though R� has different fluctuation properties depending on
the noise used �Gaussian or Lévy�, its fluctuations are mostly
the result of the fluctuations of �U� no matter what noise is
applied.

V. FLUCTUATION RELATIONS AND LARGE
DEVIATIONS

It should be clear from the previous results that what dif-
ferentiates conventional and extended fluctuation relations,
on the one hand, and the anomalous fluctuation property, on
the other hand, is the existence of a large deviation principle
for the distribution of the observable studied. In the case of

the scaled work W̄�, for example, P�W̄�� satisfies a large
deviation principle for Gaussian noise, as reported in Eq.
�24�, but not for strict Lévy noise with �� �0,2�. In the case

of Cauchy noise, in particular, the distribution P�W̄�� is such
that the limit

I�w̄� = lim
�→�

−
1

�
ln P�W̄� = w̄� �45�

yields I�w̄�=0 for all w̄, which means in effect that P�W̄��
does not satisfy a large deviation principle. The same result

applies to the distribution of W̄� obtained for all �� �0,2�, as
well as for the distribution of the dissipated work R� obtained
for all �� �0,2�, because all these distributions have power-
law tails in this range of �. This result is also general insofar
as any observable A� that does not obey a large deviation
principle does not obey a conventional or an extended fluc-
tuation relation, as is obvious from the definition of these
two types of fluctuation relations given in Eqs. �1� and �2�.
Whether or not A� satisfies in this case an anomalous fluc-
tuation property of the type discussed here depends on the
explicit form of P�A��, but we know for sure that A� satisfies
neither a conventional nor an extended fluctuation relation.

This last observation brings us to the question of whether
there exist fluctuation properties other than conventional, ex-
tended, and anomalous. In other words, if an observable A�

does not satisfy a conventional or an extended fluctuation
relation, does it necessarily satisfy the anomalous fluctuation
property defined here?

It is difficult at this point to answer this question since
there is nothing in principle that prevents one from imagin-
ing noises that lead to distributions that are not exactly Lévy
and yet do not obey a large deviation principle. However, the
fact that there exists a link between fluctuation relations and
large deviation theory restricts somehow what can be imag-
ined. Indeed, it is known from this theory that random vari-
ables obeying large deviation principles have, in most cases,
finite moments at all order. Therefore, it is natural to expect
that noises having finite moments should lead to conven-
tional or extended fluctuation relations because they should
lead to distributions having a large deviation form. This is
the case for Gaussian noise, as we have seen here, but also
for other noises having finite moments including Poisson
noise; see �36�. On the other hand, noises having one or more
infinite moments should lead to the anomalous fluctuation
property since they cannot lead, in general, to distributions
having a large deviation principle. This is the case for Lévy
noise and it should be the case, too, for any noises having
distributions with power-law tails. From this point of view,
the results that we have obtained for Lévy noise should be
representative of a larger class of fluctuations arising from
any noises having one or more infinite moments.

VI. DISCUSSION

We close this paper with some remarks about possible
experimental verifications of our results, some technical is-
sues about Lévy noise, and extensions of our results to non-
linear models and other power-law noises.

�1� The fact that Lévy noise has an infinite noise power
implies, as we have mentioned in Sec. II, that one cannot
define a fluctuation-dissipation relation between the friction
force in the model considered here and the power of the
noise. But, as argued in that section, this is not a problem
insofar as the noise is external, i.e., that it is produced and
imposed externally by a physical process which is different
from the physical process giving rise to the friction. Any
experimental verification of our results will have to include a
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noise source that has this property of being external. Perhaps
the easiest way to produce such a noise is to generate Lévy
white noise on a computer �see the remark �4� below� and to
feed the output to an appropriate transducer �electrical or
mechanical�, which will transform the digital noise produced
by the computer into a physical noise, e.g., an electric noise
or a mechanical noise.

�2� We have proposed in our previous paper �23� two
experiments that could be used to test our results. These
experiments follow the suggestion of the previous paragraph
that the noise must be external.

In the first experiment, a solid object is placed on a solid
table that is vibrated horizontally by a mechanical transducer
controlled by a computer; see �37�. By vibrating the table
with Gaussian noise or by Lévy noise, one should be able, in
principle, to generate a steady-state motion of the object and
to study the fluctuations of work- and heat-related quantities,
such as the work done on the object by the gravitational
force in the case where the table is slightly tilted. An experi-
ment of this sort is under development �38�. The requirement
that the friction and the noise are uncoupled is obviously
satisfied in this case since the friction is the solid-solid fric-
tion, which has nothing to do with the arbitrary noise exter-
nally imposed by the vibrating table.

The second experiment that we proposed in �23� is based
on granular gases maintained in steady states by vibrating
their container. Many studies have looked at the properties of
these gases when they are vibrated by periodic forcing and
by Gaussian noise �see, e.g., �11–14,39��. A natural variation
of these experiments, in view of our work, is to change the
forcing signal by Lévy white noise. This can be done, in
principle, in experiments, and certainly in numerical simula-
tions of granular gases. The quantity that is usually studied
for these systems is the power injected by the vibrating force.
As for the mechanical work studied in this paper, one could
study the power injected and verify that the fluctuations of
the latter quantity satisfy the anomalous fluctuation property
for Lévy noise.

�3� A different experiment, which could be used to probe
the Lévy fluctuations of R�, can be imagined using the anal-
ogy that exists between the fluctuations of the Brownian par-
ticle studied in this paper and the current fluctuations of
small RC electrical circuits �9,10�. The noise in such circuits
is internal, since it is the thermal Johnson-Nyquist noise,
usually treated as Gaussian white noise. However, there is
nothing that prevents one from introducing an additional ex-
ternal noise source in these circuits via fluctuating voltage
sources, such as those studied, e.g., in �40�. The fluctuations
of the voltage sources can be generated by a computer, which
means that they can be used, in principle, to mimic Lévy
white noise. Under Gaussian �thermal Johnson-Nyquist�
noise, it is known that the fluctuations of the heat dissipated
by the resistance in RC circuits follow an extended fluctua-
tion relation �9,10�. Based on our results, we expect that, in
the presence of an additional Lévy noise, the heat fluctua-
tions will be similar to those of the dissipated work R� stud-
ied here.

�4� For the purpose of the experiments just described,
Lévy noise can be generated physically to a good degree of
accuracy by generating a Lévy noise on a computer, using

techniques similar to those used for generating Gaussian
noise �see, e.g., �27,41,42�� and by feeding this artificial
noise into a mechanical or electrical transducer. Of course,
Lévy noise generated on a computer is never exactly “Lévy”:
like any physical noise, there is always a maximum value of
the noise that can be applied to a system. In the case of Lévy
noise, this maximum value or cutoff transforms the noise into
a truncated Lévy noise �43� for which the distributions of W�

and R� do not have the exact form of a Lévy distribution,
simply because truncated Lévy noise has finite moments to
all order. However, it is possible to reveal the Lévy character
of these distributions by studying their behavior or “trend” as
the cutoff is increased.

Figure 5 shows, as an illustration, the distribution of W̄�

obtained by direct sampling of Eq. �3� using truncated
Cauchy noise with different cutoff values. The behavior of

P�W̄�� seen in this figure is general for truncated Lévy noise

�43,44�: as the cutoff is increased, the distribution of P�W̄��
approaches the Lévy distribution predicted for exact Lévy
noise, which in this case is the Cauchy distribution given in
Eq. �31�. The same behavior is expected to arise for R�.

�5� For strict Lévy noise with �� �0,2�, there is always a
very large fluctuation that dominates the other fluctuations in
time, especially in the lower Lévy regime, �� �0,1�. For
Gaussian noise, on the other hand, all observable fluctuations
are more or less of the same order of magnitude. This differ-
ence between Lévy and Gaussian noise should directly be
observable in the experiments mentioned above.

�6� The generalization of our results to nonlinear Lange-
vin equations with Lévy noise should give rise to interesting
results. It is known, for example, that the stationary distribu-
tion of a Langevin equation involving, as here, a quadratic
potential is unimodal for Gaussian and Lévy noise. In the
case of a quartic potential, however, the stationary distribu-
tion of the position is still unimodal for Gaussian noise but
bimodal for Lévy noise �45�. An interesting question, in the
context of this result, is whether the distributions of W� and
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FIG. 5. �Color online� Convergence of distributions for trun-

cated Lévy noise. �Colored lines� Log-log plot of P�W̄�� for trun-
cated Cauchy noise with various cutoff values �max, which is the
maximum value imposed to the noise ��t�. The curves are obtained
by a direct numerical sampling of the trajectories of the Langevin

equation �3� with truncated Cauchy noise. �Black line� P�W̄�� ob-
tained with exact Cauchy noise, as calculated in Eq. �31�. Units:
�r=v=b=1. Simulation parameters: �t=10−2 s, �=5 s.

H. TOUCHETTE AND E. G. D. COHEN PHYSICAL REVIEW E 80, 011114 �2009�

011114-10



R� obtained for a moving quartic potential are also bimodal.
For the quartic potential, it is also known that the distribution
of the position has a finite variance, so it would be interest-
ing to see whether or not the fluctuations of W� and R� are
anomalous in this case.

�7� A recent paper by Chechkin and Klages �46� has ap-
peared recently, which studies an anomalous fluctuation
property similar to the one studied in this paper and our
previous work �23�. The paper by Chechkin and Klages deals
with Lévy noise, as in this paper, but also with long-time
correlated Gaussian noise, which gives rise to a probability

distribution of the work having a stretched-exponential form
�46�.

ACKNOWLEDGMENTS

This work was supported by RCUK, the London Math-
ematical Society, and the National Science Foundation under
Award No. PHY-0501315. The hospitality of The Rock-
efeller University, where part of this work was carried out, is
gratefully acknowledged.

�1� G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694
�1995�.

�2� G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80, 931
�1995�.

�3� G. Gallavotti, Physica D 112, 250 �1998�.
�4� J. Kurchan, J. Phys. A 31, 3719 �1998�.
�5� J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 �1999�.
�6� C. Maes, J. Stat. Phys. 95, 367 �1999�.
�7� G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.

Evans, Phys. Rev. Lett. 89, 050601 �2002�.
�8� R. van Zon and E. G. D. Cohen, Phys. Rev. E 67, 046102

�2003�.
�9� R. van Zon, S. Ciliberto, and E. G. D. Cohen, Phys. Rev. Lett.

92, 130601 �2004�.
�10� N. Garnier and S. Ciliberto, Phys. Rev. E 71, 060101�R�

�2005�.
�11� S. Aumaître, S. Fauve, S. McNamara, and P. Poggi, Eur. Phys.

J. B 19, 449 �2001�.
�12� K. Feitosa and N. Menon, Phys. Rev. Lett. 92, 164301 �2004�.
�13� A. Puglisi, P. Visco, A. Barrat, E. Trizac, and F. van Wijland,

Phys. Rev. Lett. 95, 110202 �2005�.
�14� P. Visco, A. Puglisi, A. Barrat, E. Trizac, and F. van Wijland,

Europhys. Lett. 72, 55 �2005�.
�15� S. Ciliberto and S. Laroche, J. Phys. IV 8, Pr6-215 �1998�.
�16� S. Ciliberto, N. Garnier, S. Hernandez, C. Lacpatia, J.-F. Pin-

ton, and G. R. Chavarria, Physica A 340, 240 �2004�.
�17� J. Farago, J. Stat. Phys. 107, 781 �2002�.
�18� R. van Zon and E. G. D. Cohen, Phys. Rev. Lett. 91, 110601

�2003�.
�19� R. van Zon and E. G. D. Cohen, Phys. Rev. E 69, 056121

�2004�.
�20� R. J. Harris, A. Rákos, and G. M. Schütz, Europhys. Lett. 75,

227 �2006�.
�21� A. Rákos and R. J. Harris, J. Stat. Mech.: Theory Exp. �2008�,

P05005.
�22� H. Touchette, e-print arXiv:0804.0327, Phys. Rep. �to be pub-

lished�.
�23� H. Touchette and E. G. D. Cohen, Phys. Rev. E 76, 020101�R�

�2007�.
�24� G. Gallavotti, Eur. Phys. J. B 61, 1 �2008�.
�25� B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions

for Sums of Independent Random Variables �Addison-Wesley,
Cambridge, MA, 1954�.

�26� V. V. Uchaikin and V. M. Zolotarev, Chance and Stability:
Stable Distributions and their Applications �VSP, Utrecht,
1999�.

�27� G. Samoradnitsky and M. S. Taqqu, Stable Non-Gaussian Ran-
dom Processes: Stochastic Models with Infinite Variance
�Chapman and Hall, London/CRC, Cleveland, 2000�.

�28� M. O. Cáceres and A. A. Budini, J. Phys. A 30, 8427 �1997�.
�29� M. O. Cáceres, J. Phys. A 32, 6009 �1999�.
�30� B. J. West and V. Seshadri, Physica A 113, 203 �1982�.
�31� E. W. Montroll and B. J. West, in Fluctuation Phenomena,

edited by E. W. Montroll and J. L. Lebowitz �North-Holland,
Amsterdam, 1987�, Chap. 2, pp. 61–206.

�32� Anomalous Transport: Foundations and Applications, edited
by R. Klages, G. Radons, and I. M. Sokolov �Wiley, Wein-
heim, 2008�.

�33� R. H. Rimmer and J. P. Nolan, Math. J. 9, 776 �2005�.
�34� T. Taniguchi and E. G. D. Cohen, J. Stat. Phys. 126, 1 �2007�.
�35� S. Mittnik, S. T. Rachev, and J.-R. Kim, J. Econ. Theory 14,

339 �1998�.
�36� A. Baule and E. G. D. Cohen, Phys. Rev. E 79, 030103�R�

�2009�.
�37� A. Buguin, F. Brochard, and P. G. de Gennes, Eur. Phys. J. E

19, 31 �2006�.
�38� P. S. Goohpattader, S. Mettu, and M. K. Chaudhury, Langmuir

�to be published�.
�39� P. Visco, A. Puglisi, A. Barrat, E. Trizac, and F. van Wijland, J.

Stat. Phys. 125, 529 �2006�.
�40� D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman, Rep.

Prog. Phys. 61, 889 �1998�.
�41� J. M. Chambers, C. L. Mallows, and B. W. Stuck, J. Am. Stat.

Assoc. 71, 340 �1976�.
�42� A. Janicki, K. Podgórski, and A. Weron, in Stochastic Pro-

cesses: A Festschrift in Honour of Gopinath Kallianpur, edited
by S. Cambanis, J. K. Ghosh, R. L. Karandikar, and P. K. Sen
�Springer-Verlag, New York, 1993�, pp. 161–170.

�43� R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946
�1994�.

�44� I. Koponen, Phys. Rev. E 52, 1197 �1995�.
�45� A. Chechkin, V. Gonchar, J. Klafter, R. Metzler, and L. Tana-

tarov, Chem. Phys. 284, 233 �2002�.
�46� A. V. Chechkin and R. Klages, J. Stat. Mech.: Theory Exp.

�2009�, L03002.

ANOMALOUS FLUCTUATION PROPERTIES PHYSICAL REVIEW E 80, 011114 �2009�

011114-11


